Search results for " Riemannian geometry"
showing 7 items of 7 documents
Linear invariants of Riemannian almost product manifolds
1982
Using the decomposition of a certain vector space under the action of the structure group of Riemannian almost product manifolds, A. M. Naveira (9) has found thirty-six distinguished classes of these manifolds. In this article, we prove that this decomposition is irreducible by computing a basis of the space of invariant quadratic forms on such a space.
The isoperimetric profile of a smooth Riemannian manifold for small volumes.
2009
A Remark on an Overdetermined Problem in Riemannian Geometry
2016
Let (M, g) be a Riemannian manifold with a distinguished point O and assume that the geodesic distance d from O is an isoparametric function. Let \(\varOmega \subset M\) be a bounded domain, with \(O \in \varOmega \), and consider the problem \(\varDelta _p u = -1\ \mathrm{in}\ \varOmega \) with \(u=0\ \mathrm{on}\ \partial \varOmega \), where \(\varDelta _p\) is the p-Laplacian of g. We prove that if the normal derivative \(\partial _{\nu }u\) of u along the boundary of \(\varOmega \) is a function of d satisfying suitable conditions, then \(\varOmega \) must be a geodesic ball. In particular, our result applies to open balls of \(\mathbb {R}^n\) equipped with a rotationally symmetric metr…
Some remarks on minimal surfaces in riemannian manifolds
1970
Feuilletages Riemanniens singuliers
2006
Abstract We prove that a singular foliation on a compact manifold admitting an adapted Riemannian metric for which all leaves are minimal must be regular. To cite this article: V. Miquel, R.A. Wolak, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
Local softening of information geometric indicators of chaos in statistical modeling in the presence of quantum-like considerations
2013
In a previous paper (C. Cafaro et al., 2012), we compared an uncorrelated 3D Gaussian statistical model to an uncorrelated 2D Gaussian statistical model obtained from the former model by introducing a constraint that resembles the quantum mechanical canonical minimum uncertainty relation. Analysis was completed by way of the information geometry and the entropic dynamics of each system. This analysis revealed that the chaoticity of the 2D Gaussian statistical model, quantified by means of the Information Geometric Entropy (IGE), is softened or weakened with respect to the chaoticity of the 3D Gaussian statistical model due to the accessibility of more information. In this companion work, we…
Geodesic flow of the averaged controlled Kepler equation
2008
A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to $\SS^2$ is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controll…